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Abstract. The development of approximate methods for the equations describing noncatalytic reversible gas-solid 
systems with fast reactions are investigated by means of perturbation techniques and series solutions. The effect 
of the reaction orders, when the back reaction is not neglected, on the existence of a moving boundary is also 
discussed. It is shown that a moving boundary exists only when the reversible reaction rate is independent of the 
reactant solid concentration. 
Estimates for conversion times are also obtained for the cases where all the reaction orders are non-zero and where 
the kinetics is independent of the reactant and product solids. These approximate solutions may find application, 
for example, in computational models of ironmaking blast furnaces. 

1. Introduction and formulation 

Over the years, a number of mathematical models have been introduced in the theoretical anal- 
ysis of the gas-solid reactions which find important applications in metallurgical and chemical 
manufacturing processes. Practical situations are given, for example, in Ramachandran and 
Doraiswamy [1] and Sampath and Hughes [2]. Basically, these models can be categorised into 
two main classes, one in which there exists a moving boundary and the other without. The 
former class consists of the well-known shrinking core model, as discussed in Levenspiel [3] 
and Szekely et al [4], which rests on the assumption that the reaction is localised at an interface 
(or a very narrow zone) between the completely unreacted core and the completely reacted 
product layer. This is true when the reaction rate is very rapid compared with the diffusion of 
the reactant gas, as shown by Do [5], or when the solid reactant is nonporous, a case discussed 
by Levenspiel [3]. The other circumstance in which there is a moving boundary, the reaction 
zone is diffuse throughout the solid ensemble with the concentration of the solid reactant 
falling gradually to zero at that interface (Ishida and Wen [6]). Generally, the above models 
have been analysed neglecting the back reaction or if it is included, the reaction rates are 
assumed to be of first order in both reactant and product gases and independent of the solid 
concentrations, as illustrated in the papers by McAdam et al [7] and Szekely et al [4]. 

We consider an isothermal reversible noncatalytic gas-solid system represented by 

kl 
Gas  1 + b .Sol id  1 ~ c .Gas 2 +  d .So l id  2 (1) 

k2 

in which solid 1 is converted to solid 2. We assume that there is no change in the particle's 
size during the course of reaction and that the solids do not diffuse. Then the material balance 
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equations are given by 

o a ]  2 t -- f r  O-~'-  = D1Vx, G1 (1.1) 

Ot-- 7 - b f '  (1.2) 

Oa'2 z , 
P--O-~- = D 2 V z ' G 2  + c f '  (1.3) 

Ot' = df'  (1.4) 

o__) 
where V 2, = Oz' Oz r with a = 0, 1, 2 for slab, cylindrical and spherical geometries 

respectively. 
In the above equations, G~ and G~ are the concentrations of the reactant and product gases, 

respectively. Similarly S~ and S~ are that of the solids. D1 and D2 are the respective diffusion 
coefficients, assumed to be constant, for the reactant and product gases. The parameter t~, 
assumed to be constant, is the porosity. The constants b, c and d are the stoichiometric 
coefficients. We assume power-law kinetics so that fr,  the total reaction rate, is given by 

f ,  = k la ]n l  S~ rn, _ ~2t~ 2 1 _  ,.-,,n2o, (1.5) 

where kl and k2 are the forward and back reaction rate constants respectively. The parameters 
nl ,  m l ,  n2 and m2 are the reaction orders of the reactant and product concentrations. 

We assume that initially, the particle is wholly of type solid 1, of concentration So, having 
no gas of either type inside it and the reactant gas is supplied externally from an inexhaustible 
source of concentration Go. We also assume that there is no gas film around the particle and 
symmetry is observed if the geometry of the particle is spherical or cylindrical, else half of a 
slab with width 2L is considered. Thus, the initial and boundary conditions are given by 

t '  = o ,  = = = o ,  = S o ,  (1.6) 

and 

x'  = O, OCt - OG~2 - O, (1.7) 
Ox' Ox' 

x ' = L ,  G] = G o ,  G ~ = 0  (1.8) 

2. Non-dimensionalisation 

We define the following non-dimensional parameters and variables • 

G' S'  x' 
__ 1 S 1 - -  1 = - -  

G I - E  - S o o  x L 

S I D l t  I 
G2 = G'2 $2 = 2 t -  

Go So oL 2 
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¢2 klGonlSo mlL2 oGo K -  klG°nl-n2 

= D1Go ¢ =  So k2So m:-ml 

then the non-dimensionalised material balance equations are 

= 92 
D1 

0GI _ xTzGI _ q~Zf (2.1) 
Ot 

Ot 

whereX7 2 = x  - a  0 (x a 0 .  Ox ~x  ) with 
respectively and f is given by 

0,_,01 
0--t-- ¢¢2b/ (2.2) 

0G2 _ t~vEG2 + q32c f (2.3) 
Ot 

0S2 = ¢¢Zd f (2.4) 

o~ = 0, 1, 2 for slab, cylindrical and spherical geometries 

1 ~ 2  ~7"~2 

where K is the equilibrium constant. This power-law type kinetics has been widely assumed in 
the analysis of gas-solid reactions. For example, in the case of irreversible reactions (K >> 1), 
Borghi et al [8], Dudukovic [9] and Stakgold and McNabb [10] assumed a first order in the 
reactant gas but arbitrary order in the reactant solid. For the situation of reversible kinetics, 
as mentioned above, McAdam et al [7] and Szekely et al [4] assumed that the kinetics were 
independent of the solid concentrations. 

The dimensionless time is based on the characteristic diffusion time of the reactant gas. 
The dimensionless parameter, ¢, is the Thiele Modulus. It is the ratio of the characteristic time 
for diffusion, L21D1, to that of the reaction characteristic time Go/(kl Go TM So ml) • It therefore 
measures the relative importance of the diffusion of the reactant gas to reaction phenomena. 
For example, if ¢ is large, the reaction rate is fast compared to the diffusion of the reacting 
gas. 

The dimensionless parameter, ¢, is the ratio of the bulk gas and the initial solid concentra- 
tion. This parameter is usually much less than unity for gas-solid reactions. The dimensionless 
parameter, g, is the ratio of the characteristic diffusion times of the diffusing gas G1, oL21D1, 
to that of the product gas G2, oL21D2. If ~ is small, the product gas will take a longer time to 
diffuse out of  the particle. 

The transformed initial and boundary conditions are given by 

t = 0, G1 = G2 = $2 = 0, S1 = 1 (2.5) 

OGI OG2 
x = O, Oz Oz 0 (2.6) 

x = 1, G1 = 1,G2 = 0 (2.7) 

From equations (2.2), (2.4) and applying the initial conditions (2.5), we have an expression 
for the conservation of the solids, namely 

dSl + bS2 = d. (2.8) 



368 Y.H. Chan and D.L.S. McElwain 

We see that the final state associated with these boundary conditions is the complete 
conversion of the solid $1. We thus have G1 = 1, G2 = 0 and S1 = 0 as the ultimate state of 
this system. 

In this work, by means of perturbation techniques and series solutions (by separation of 
variables), we carry out an analysis on an isothermal reversible noncatalytic gas-solid system 
under the assumption that the reaction rate is very rapid compared with the rate of diffusion of 
the gaseous reactant (¢ >> 1). We also assume that the parameter ¢ is small and the parameter 

to be of order unity. The effect of the reaction orders on the existence of a moving boundary 
is also presented. Estimates for conversion times for the case where all the reaction orders are 
non-zero and also the case where the kinetics is independent of the reactant and product solid 
concentrations are discussed. 

3. Transient period 

From equations (2.1-2.4), we see that in the initial transient period, the time-derivative terms 
can take part in a dominant balance only if we rescale the time and introduce a short time 
scale t + where, for ¢2 >> 1, 

t + = ¢2 t .  

Then equations (2.1-2.4) become 

OG1 
- -  ~ 2 V 2 G 1  - f (3.1) 

Ot + 

OS1 
Ot + = - ¢ b f  (3.2) 

0G2 _ t~#2V2G2 + c f  (3.3) 
Ot + 

OS2 
- C d f  (3.4) 

Ot + 

with initial and boundary conditions given by equations (2.5-2.7) with t replaced by t + and # 
1 

= - < < 1 .  ¢ 
Firstly, we seek a straightforward asymptotic expansion in the form, 

= o ° + # 2 c I  + . . .  

2 1 s i  = s °  + . + . . .  

for i =1,2. Substituting into equations (3.1-3.4) gives the leading order 

ooo 
Or+ 

Or+ 

Ot+ 

_ y0  

_ _ _  Cby  0 

- -  c f  0 

(3.5) 

(3.6) 

(3.7) 
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0 4  
Ot + - Cdf ° (3.8) 

where 
fo ~_ont ~o'm 1 f20n2 ~,om2 

K ~'J2 ~2 

and the initial conditions are given by 

t +  = 0,  a ° = a ° = s o = o,  s o = 1 

Solving equations (3.5-3.8) gives the undisturbed region (outer solution) in the domain 
0 ~ < x <  1, thatis 

G~ ut = G~ ut = S~ ut = O, S~ ut = 1 (3.9) 

By examining the conditions (2.7) and (3.9) for G1, we see that large spatial gradients are 
expected to occur near x = 1 and to analyse this boundary layer, we introduce the stretched 
variable ~ as 

1 - - x  ¢ -  
# 

Then in terms of (,  equations (3.1-3.4) become 

OG1 02G1 
Ot + Of 2 

f (3.10) 

OS1 
Or-- T -  Cbf  (3.11) 

OG2 02G2 
-- 5 - ~  + cf (3.12) 

Ot+ 

OS2 
= Calf (3.13) 

Ot + 

with the initial and boundary conditions given by 

t + = 0, G! = G2 = $2 = 0 S1 = 1 (3.14) 

= 0, G1 = 1 G2 = 0 (3.15) 

~ cx3, G1 = G2 = $2 = 0 S I  = 1 (3 .16)  

Structure for t + << 1 
To observe the manner in which the solutions of equations (3.10-3.16) evolve initially, we 

examine the limit as t + --+ 0. We assume a perturbation expansion for the G's and S's in the 
layer (inner solution) near the outer edge of the particle, as discussed by Aziz and Na [ 11 ] and 
Kapila [12], in the form 

t2~ 

p=0 

OO 

p=0 
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( and ~- = 4t +. Substituting these series into equations (3.10-3.13) and for i = 1,2, r / -  2gr{ T 

equating coefficients of "r ° gives the following results: 

G10 = erfc rl, •10 = 1, G20 = $20 = 0 (3.17) 

where erfc is the complimentary error function. To this order of approximation, the initial 
behaviour of  the system involves only the diffusion of the reactant gas with no reaction and 
thus no product gas or solid conversion. This result is similar to that found by Kapila [12] 
in a system which models the reaction and diffusion of two diffusing species with no back 
reaction. 

From the results obtained in (3.17), we can assume that at this very short time scale t +, the 
reactant solid S1 is of order unity, then with $I = 1, equation (3.10) reduces to 

OG1 02G1 - O~ 1 (3.18) 
Ot + 0 (  2 

with the initial and boundary conditions given by 

t + = 0, G1 = 0 (3.19) 

= 0, G1 = 1 (3.20) 

--4 0% G1 = 0 (3.21) 

We now discuss and investigate exact/approximate solutions for equations (3.18-3.21). 

A. KNOWN EXACT SOLUTIONS 

Carslaw and Jaeger [ 13] used equations (3.18-3.21), with n l = 1, to describe the conduction 
of heat along a thin rod which loses heat from its periphery at a rate proportional to its 
temperature, and the exact solution is given by, 

1 ¢ 1 ~  V'~] G?= ~e- erfc[2~r~T v/-~] +~e e r f c [ 2 @ +  • 

W h e n  n 1 7~ 1, closed form expressions for G1 are not available. 

(3.22) 

B. PERTURBATION EXPANSIONS 

Equation (3.18) has also been used to describe the temperature response of fins by Aziz and 
Na [11]. They gave a fourth order perturbation solution with nl = 1, and we can use this to 
obtain an approximation to the reactant gas concentration G1, namely, 

i=0 

with 
Oo = er f c 
01 = i2erfc r I -~erfc  

~4 
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02=i4erfc r l - l i 2 e r f c  r l + l e r f c  rl 

1 2 1 
03=i6erfc rl- igerfc ~ + - ~ i  er fc  r I - - ~ e r f c  r I 

1 4 1 .2 1 
04 = iSerfc ~- i6erf c ~1 +-~ i  erfc  71 - - ~ z  erfc  ~ + 6-6-~erfc 

where p denotes an approximation based on a perturbation expansion. 

For nl not unity, Aziz and Na [1 l] mention that closed form solutions do not appear to 
be available and Na [14] has outlined in detail a Method of Superposition to provide the 
numerical solutions. 

We can also obtain an expression for the product gas concentration. For the special case of 
-- 1 and nl = l, the solutions for G2 are given by 

4 

= -c 

i=l 

where the Oi are given above. For the case of arbitrary 6, closed form solutions are only 
available for the first order perturbation, namely, 

G~ = T er f c V ~  

Finally, with nl = 1, the reactant solid (only using a second order perturbation) is given 
by 

2 

S p = 1 + ~ Ttyi 
i = l  

where 

71 =¢b 2 ~ r l e - ~  - - ~ e r f c  r l -  erfc  rl 

1 
7 2  = Cb[ ~ Ii -  I21 

U 

with 

Ii = l e r  f c rl - 6 ~ e - 0 2  + -~erl3 - 2 _ lrl4 er f 77 

1 3 -02 1 4 12 = l i2er fc  ~l- ~2 ier f  c ~ + 1---~12erfc24 z/- 1-~-~1 e + ] ~  erfc  ~? 

Then from the expression for the conservation of the solids, we get 

= d ( 1  - 

Results for the case of spherical geometry with ¢ = 100, ¢ = 0.1 and all other parameters 
being unity are presented in Figure 1. The above solutions also provide good results for slab 
and cylindrical geometries. 

As can be seen from Figure 1, the method developed in this section provides excellent 
approximations to the distributions for all species when t + is small (t + ~< 2). 
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0".9 t 0".9 ~. 

iJ 
0'.9 

-A 

~ o  o 
0 . 9 5  1 0 . 9 5  1 

• 5 

t*=l t*=2 

Fig. 1. Distributions obtained from a full numerical solution ( _ _  

t*=3 

for a sphere with ¢ = 100, ~b = 0.1 and 
other parameters unity (this work : . . . . .  Results from the Perturbation Approximation). 

c. SERIES SOLUTIONS 

As an alternative to the perturbation procedure described above, if 0 < /z << 1, equations 
(3.18-3.21) can also be solved in terms of  series solutions, with the boundary condition (3.21 ) 
replaced by 

1 OG1 OG2 
u o¢ o¢ 

- 0  

For the case of  n l  = 1 we have, 

G~ = e - (  - Z 2# A2 sln(~l~)e -'xlt 
p = l  1 

(3.23) 

where 

= ( 2 p -  1) #Tr 
5- 

p =  1,2, . . .  with A 2 = ~2 + 1 

and s denotes an approximation based on a series solution. The solutions described by expres- 
sions (3.22) and (3.23) give extremely similar results. 

One advantage of  using the series solution rather than the exact or perturbation expressions 
is that simple results for the reactant solid and product gas concentrations can be easily 
obtained. Since on this fast time scale, the back reaction remains negligible, using the series 
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t + = 5 t + = ~0 

t ÷ = 5 0  

Fig. 2. Results obtained from full numerical solution ( _ _  

8 

t *  = 7 5  

) for a sphere with ¢ = 100, ¢ = O.l and other 
parameters unity (this work : . . . . .  Results for the series method). 

expansions, the reactant solid concentration is given by 

- ¢ b  e-¢ t  + + - - s i n ( ~ l ¢ )  [e-  , - 1 
e p= l  ,~4 

m l  = 1 ,  

1 [ [ r 2+, ]llm ' 1 - Cb(1 - rot) e - i t  + + - -  sin(~l~) [e- 1 - -  ml # 1. 
p= l  )~14 

(3.24) 
Expanding equation (3.24) and gathering leading terms, we find that the solutions for S~ 

breakdown when t + ~ O for ml = 1 and t + ,,~ O I[ 1 ml lb¢ l  for ml # 1. 

Figure 2 shows results obtained from expression (3.24) together with the numerical solu- 
tion having all reaction orders being unity. Although with b = 1 and ¢ = 0.1 we would expect 
the approximation to breakdown when t + ~_ 10, the approximation appears to be quite good 
up to t + = 25. 

To obtain an estimate of the product gas concentration, since ¢ is small, we use the steady 
state solution of G~ as the source term in the product gas equation, and get 

c 

where 

[ 1 1 - e -¢ + ~ 2# ~2 -~ 1 sin( ) _ 1 p=l {--~ ~ sln({E¢)e a'2t+ 

~ 2 = ( 2 p - 1 ) - ~  p = 1 , 2 , . . ,  w i t h ) $ = ~ 2 2  

(3.25) 
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giving G~(x, t +) /> G2(x, t+). Results for the case of spherical geometry with ~b = 100, 
~b = 0.1 and all other parameters being unity are presented in Figure 3. We would expect 
better results as ~b gets smaller. 

Comparison of Figures 1 and 3 shows that while the perturbation solution provides a good 
approximation for short times, the series method gives excellent approximations for longer 
times. Another advantage of using the series solution technique is that for arbitrary nl ,  bounds 
can be generated utilising the method discussed in our earlier work, Chan and McElwain [ 15], 
rather then solving equation (3.18) numerically. 

STRUCTURE FOR t + >> 1 

As t + increases, the above results for the transient period will eventually breakdown. A new 
structure is required and following Kapila [12], we assume a perturbation expansion of the 
form, for i = 1,2, 

p=O 

p=O 

¢ 
where r I = ~ - ~  and ~- = 4t +. Substituting these expansions into equations (3.10-3.13) shows 

that the leading order is governed by the reaction term, 

nleml 1 ^n2 "mE 
10~,10 -- ~G2oS~o = 0 (4.1) 

0".9 i 0".9 i 0'.9 i 

o _ o_ 
0 .95  1 0 .95  i 0 .9  

t * = i  t *=2 t * : 3  

Fig. 3. Results obtained from full numericai solution ( ) for a sphere with t# = 100, ~b = 0.1 and other 
parameters unity (this work : • • Results for the series method). 
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Substituting the given boundary condition (2.7) into equation (4.1), we have 

z = l  8 1 0 = 1 ,  8 2 0 = S 1 0 = 0 ,  $20 d b (4.2) 

Thus, on this time scale, the reactant solid is completely reacted at the outer edge. 
If K >> 1, that is when the back reaction becomes insignificant, a sharp shrinking core is 

obtained as shown by Do [5]. Figure 4 shows numerical results of the effect of the equilibrium 
constant K on the solid distribution, with a certain set of the other parameters. 

r~ 
0 
U~ 

C 
O. 

K = 1 

c 
0 

K = 2 

,rn, 

O '  M__ 

0 1 
K = 5 0  K = 1 0 0  

Fig. 4. Effect of equilibrium constant K for a slab geometry with q~ = 100, ~b = 0.1, t = 1.0 and other parameters 
unity. 

A perturbation analysis of the shrinking core model was first developed by Bischoff [ 16]. In 
that work, the perturbation expansion for the location of the moving boundary was neglected. 
Murray and Carey [17] used a moving finite-element technique to analyse the approximate 
solution of the shrinking core model having planar geometry. In a second paper, Carey and 
Murray [18], spherical geometry is considered and, utilising perturbation analysis and a 
finite-element formulation, the position of the interface is tracked precisely. Their results 
show that the error associated with Bischoff's approximate perturbation model is small and 
thus vindicated its use. Do [5] showed that when the Thiele modulus is large and there is 
no back reaction, the shrinking core model is valid. Bhatia [19,20], performed a perturbation 
analysis on a general model having solid of low initial permeability. Both internal and external 
reactions are considered and the effect of the local internal conversion at the shrinking core is 
also taken into account. Bhatia showed that the diffusion--controlled form is a special case of 
internal reaction and diffusion, and that the most general form of the shrinking core model is 
obtained only when the reaction on the core surface is additionally considered. 

In the above-mentioned papers, the back reaction has been neglected. When the back 
reaction is significant, with ~b large, we are interested to determine the effect of the parameters 
r~l, ~1,  n2 and m2 on the existence of a moving boundary. 
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4.  E x i s t e n c e  o f  s h r i n k i n g  c o r e  

Case 1 • n 1 , m 1 , n 2 ,  m 2 non-zero 

We first consider the most general case where all the reaction orders are non-zero. From 
J 

equation (2.8), we have $20 = ~-(1 - $10) and substituting this into equation (4.1) gives, 
o 

so that 

10~ '1o  - ~ ( J 2 o  (1 - -  S 1 0 )  m2 = 0 

$?o _ ^.2 (5.1)  
(1  qlo)m2 ^ TM G2°  - G10 

From expression (5.1), we see that the reactant solid is zero when the product gas concentration 
is zero. From earlier results, we know that there are only two possibilities for 020 = 0, namely 
in the undisturbed region where $10 = 1 and at the outer edge where S10 = 0. Between the 
outer edge and the undisturbed region, from the transient analysis above, we see that the 
product gas is never zero. Thus from equation (5.1), we have S10 = 0 only at the outer edge 
implying that no moving boundary exists. This is shown in Figure (5a). 

Case 2 : T/z 2 ----- 0 ,  nl,  ml ,  n2 non-zero 
In this case, with m2 = 0, the kinetics are independent of the product solid concentration 

and from equation (4.1), we have 
^ n  2 

G20 (5.2) ^ m  1 

S I O  - -  ^ n l  
KGlo 

Once again, with similar argument as in Case 1, ,~10 = 0 only at the outer edge, thus no 
moving boundary exists, see Figure (5b). It can be seen that for the region where Slo = 1, we 
get 

^ n 2  ^ rl, l 
G 2 o  = K G 1 0  

Case 3 • m I = 0 ,  h i ,  n 2 ,  m 2  n o n - z e r o  

For this case, the kinetics are independent of the reactant solid concentration and from 
equation (4.2), at x = 1, we have 020 = 0 and $10 = 0. Thus for x # 1, substituting from 
equation (2.8), with ml  = 0, gives 

Rearranging, we get 

( d )  m2 (1 - '~10)m2 - KGI~^ n2 

G2o 

,~1o = 1 -- 

b )  m2 ^ n l  
KGlo 

^ ~ 2  
G20 

1 

m 2  

and S10(z # 1, t) = 0 when 
^ n 2  ^ l, Zl 

G2o = KGlo (5.3) 
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imply ing  that a m o v i n g  boundary exists as s h o w n  in Figure (5c). 

Case  4 • m l  = m2  = 0, r~l, n2 n o n - z e r o  

377 

.,,=I 
r=4 

0 

0 
0 

n~:m,:nz:me: I 

E 
0 

nt=nz=m~=1 m2:0 
0 I 

n,=ne=m2:l ml=O 

0 ,I 
n =ne"~ m,--m2=O 

C~ 

0 
0 
1/'% 

t 
Ca) 

\ \  
\ \  

\, 
C 

0 
(b) 

7i 
%- 

(c) 

=4,,,, 
% 

(d) 

C/I 

0 
0 

mt=nm:me= I nt=O 

C:) 

0 
n,=m~--me=1 ne=O 

0 i 
m,=m2=:t n,=n2,=O 

lrl 

" \ \  

r 

°0  1 °l 1 
(e) Cf) 

",i 
1 

Cg) 
Fig. 5. Effect  o f  the reaction orders for a slab geometry  with ~b = 100, ~b = 0.1 and t = 1,3 ( . _ _  
or gas,  - . . . .  : Product gas).  

: Reactant solid 
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For this case, the reaction is independent of solid concentrations and from equation (4.1) 
we get 

^ n l  1 -~n2 
G10 = ~ G z 0  (5.4) 

We find that this relationship is not valid at the outer edge where z = 1 as 820 = 0 and 
81o = 1. Thus the reactant solid has to be zero at the outer edge. Here the reactant solid is 
given by 

f0 t 1 ^ n2 ^ n  1 
$1 = 1 - G10 - -=;G20 d-r 

When expression (5.4) is satisfied, the reactant solid remains at unity otherwise there exists a 
time such that gl = 0, implying that amoving boundary exists as shown in Figure (5d). From 
equation (5.4), as K --+ oo, we have Glo = 0 but if K is finite, 81o takes on an equilibrium 
value in the region where $10 = 1. 

Case 5 : nl = 0, ml ,  n2, m2 non-zero 
For this case, the kinetic form is independent of the reactant gas and we have 

$1o 1 ,̂~2 (5.5) 
(1 - S l O )  m 2  - -  K a 2 °  

With a similar argument to that in Case 1, since 820 is zero at z = 1 and in the undisturbed 
region, $1o is zero only at the outer edge,  see Figure (5e). Thus no moving boundary exists. 

Case 6 : T~ 2 = 0 ,  nl,  ml ,  m2 non-zero 

With n2 = 0, the kinetics are independent of the product gas concentration, from equation 
(4.1) and rearranging, we have 

^ m 2  
$2o ^ nl (5.6) 

^ ~ 1  - KGI°  
SlO 

and we can conclude that Slo can never be zero, thus implying that there is no moving 
boundary as can be seen in Figure (5f). 

Case 7 : n 2  ---- n l  = 0 ,  m l ,  m 2  non-zero 
Lastly, when the kinetics are independent of both gases, we have 

^ m 2  

_ K ( 5 . 7 )  
^ r a  1 

$10 

Once again, as in Case 6, $10 can never be zero as shown in Figure (5g), implying that no 
moving boundary exists. 

From the above analysis, we conclude that when the Thiele modulus is large, the criterion 
for which a shrinking core exists is only when the reversible reaction rate is independent of 
the reactant solid concentration, that is rnl = 0. Thus, if the forward kinetics has even a slight 
dependence on the reactant solid concentration, the assumption of a shrinking core will not 
be appropriate (see case 2). 

5. Estimates for conversion times 

In this section, we analyse two particular cases, one where the parameters hi ,  ml ,  n2 and m2 
are all non-zero and the other where the kinetics are independent of the reactant and product 
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solid concentrations. The former is interesting because of its generality and cases (2, 5-7), 
discussed in the previous section, are just modifications of this particular case. The latter case 
has been analysed by a number of research workers, McAdam et al [7] and Szekely et al [4], 
as it displays a shrinking core. Cases (3, 4) are of this shrinking core type. Conversion times 
for both cases are estimated and compared with that when the back reaction is neglected. 

Conversion-Time Relationships 
The amount of unreacted solid left in the particle, Su, in dimensionless variables, is given 

by 
f l  S1 (iT, {) da,  for a slab, 

= (6.1) 
Su f l  47rt72S1 (o, ~) dcr, for a sphere. 

Another quantity which is quite often used as a measure of solid conversion is the fractional 
reduction, F ,  and this is given by 

1 - Su, for a slab, 

F =  " : t  
1 - ~ S u ,  for a sphere. 

/47f 

(6.2) 

For the shrinking core case, using the approximation given by Do [5], we obtain 

S~, = / X,  for a slab, 

t X 3, for a sphere. 
(6.3) 

with the fractional reduction, F ,  given by 

F = 1 - S,., (6.4) 

Here X is the position of the interface and is given by 

- 1 
X = 1 - (2t)~ slab (6.5) 

( 1 - X  2) ( 1 - X  3) = ~  sphere (6.6) 
2 3 

where t is the slow time scale, defined by ~ = ~bt, where ~b is assumed to be small. 
For the case where a sharp interface is not obtained, Keady and Stakgold [21] have shown 

that the profile of the reactant solid remains convex and thus a good approximation for 
determining full conversion is when $1 (0, to) = 0, where tc is the total conversion time. 

We first express equations (2.1-2.4) in terms of the slow time scale t, and obtain 

20G1 Lb# ~ -  -- #2V2G1 - f (6.7) 

I.Z2 ~ -~- - b  f 

OG2 ~b~2--~ - :- t~#2V2G2 + cf 

(6.8) 

(6.9) 
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20S2 _ 
# - ~ - - d f  

with initial and boundary conditions given by (2.5-2.7) with t replaced by [. 
Utilising an expansion in #2 and assuming that ¢ = 0(#2) ,  let 

Gi  = GiO + # 2 G i l  + . . .  

Si = Sio + #2Sil + . . .  

for i = 1,2, and substitute into equations (6.7-6.10), we get 

o(1) 

O(~ 2 ) 

subject to 
{ = 0 ,  

X =0~ 

Gnt ¢mt 1 n2 m2 
10~10 -- ~G2oS~_o = 0 

V 2 G l O - f l  = 0 

0•10 
- - -  - b f l  

Ot 

t~V2G2o + c f l  = 0 

0S20 
o---2- = dr1 

GlO = G20 = $20 = 0, S10 = 1 

OGlO OG2o 
- -  - - 0  

Ox Ox 

x = 1, GlO = 1,G2o = 0  

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

CONSERVATION OF SOLIDS AND GASES 

From the conservation of the solids, we know that 

dSlo + bS2o = d 

From equations (6.12) and (6.14), eliminating f l ,  we have 

V2(cG10 + ~G2o) = 0 

and using the boundary conditions (6.17), (6.18) gives 

cGlo + 3G2o = c 

which can be regarded as a conservation of gases condition. 

Case A. n l ,  m l ,  n2, m2 all non-zero. 

(6.19) 

(6.20) 

(6.21) 
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In the general case, from equation (6.11), on this time scale, a pseudo- equilibrium exists 
where the forward and back reactions are approximately equal. Thus the reactant gas concen- 
tration is governed by the diffusion equation without the reaction term. The solution of this 
diffusion equation is given by 

1 - ~ = 1  ~ sin A v cos Apxe -~2~, 
GlO 

2 cos A v sin ApXe-X~ ~, 

for slab, 

for sphere. 
(6.22) 

q r  

where ),p = (2p - 1)-~ for slab and )~v = P~ for sphere, p = 1,2 

The reactant solid is given from equation (6.11) and substituting from equations (6.19) and 
(6.21) we have, 

S,'~' _ 1  ( d )  mz ( ~ )  ~2 (1-G'°)n~~-a7 (6.23, 
(1 - S 1 0 )  m2 K G 1 0  

with SlO = 1 when Glo = 0. 
At the center of the particle, x = 0, we have 

S?o' (o, [ 1 -  alo(O, )] "2 
[1 - s lo(o , t ) ]  TM = 7 Glo(0, )n, (6.24) 

where 

We find that using only the first term of the summation series of equation (6.22), a simple 
expression providing good approximations can be obtained, that is 

[ 1 -  SlO(0, t)] m2 = 7  [1 - 2 _-2~] TM 

[ 

(6.25) 

where 

(A., j)  = { ( 2 ' 1 ) '  ifslab, 

(Tr, 0), if sphere. 

If SI0(0, t) = e << 1, then (1 - e) ~ O(1), and from equation (6.25), we have an expression 
for Slo(0, to) near full conversion, namely, 

[2e_~2.~ ] n2 

= 
2 - -  2 ~  n l  

(6.26) 

I f  h i  = m l  = n 2  = m 2  and "), = 1, then from equation (6.23), we have 

SI0 ----- ~-G2oc and Glo = dS2o 
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Fig. 6. Effect of the parameter ¢. Results obtained from a full numerical solution ( _ _  
with ¢ = 100 and other parameters unity (this work : . . . . .  Results for the series method). 
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Fig. 7. Effect of the parameter ¢. Results obtained from a full numerical solution ( 
with other parameters unity (this work : . . . . .  Results for the series method). 

) for a slab geometry 

) for a slab geometry 

Figures 6 and 7 s h o w  results for slab geometry  with various values o f  the parameters. It can 
be seen that as ¢ gets smaller, better results are obtained since w e  have  made the assumption 
that ¢ is small .  It can also be conc luded that for ¢ _> 10 and ¢ < 0.01,  that is, ¢ --~ ~ ,  g o o d  

results are obtained. They  are particularly good  at longer times. 
For this case,  s imple  express ions  for S10(0, t),  Su and F are available and are g iven by 

2 e_a2j S o(O, = (6.27) 
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(6.28) 2 e_)d.~ ,oq'u = "~" (471") 1 - j  

F = 1 - Su (6.29) 

Table 1 shows the results for $10(0, t), Su and F at time t together with the estimate of F 
obtained from the numerical solution of the full problem. 

Table 1. Conversion estimates for a slab with ¢ = 100, ¢ = 0.1 and other parameters unity. 

S(O,t) Su F F ( n u m )  

1 0.107977044 0.068740321 0.9312597 0.9636575 

2 0.009156990 0.005829521 0.9941705 0.9967979 

3 0.000776558 0.000494372 0.9995056 0.9995883 

4 0.000065856 0.000041925 0.9999581 0.9999813 

5 0.000005585 0.000003555 0.9999964 0.9999686 

6 0.000000470 0.000000302 0.9999997 0.9999901 

7 0.000000040 0.000000026 1.O000000 0.9999995 

8 0.000000003 0.000000002 1.O000000 0.9999995 

It can be seen that, for this specific case the total dimensionless reduction time tc for slab 
geometry is approximately 3. When the back reaction is neglected, tc is approximately 0.5 as 
obtained from expression (6.5). 

The results discussed above have by no means exhausted all the information regarding 
this very general case. Other simple expressions for conversion-time relationships can also 
be derived depending on the values of the reaction orders and 3'. 

Case B : m l  ---- m2  = 0, n l ,  n 2 ~ 0 
Here the reaction kinetics is independent of the solid concentrations. As discussed in 

case (4) of the last section, this situation predicts the existence of an interface X. Then, for 
O < _ x < X  

1 n2 
S10 ¢ 0 , GlO = G~o , G20 = G~o , Gln~ = ~ G 2 0  (6.30) 

and for X < x < 1, we have $1o = 0 with Glo satisfying the following, 

V2GlO = 0 

subject to 
x = X G10 = 

x = 1 Glo = 1 

Solving for Glo, gives { 1 
Glo = 1 - . X  [(x - X)  + G~'o(1 - x)], 

'-r2t,- [(z - x )  + a ox(1 - z ) ] ,  

for a slab, 

for a sphere. 
(6.31) 
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G20 is obtained from the conservation of gases condition, and we obtain 

{ 1G_~(1  - x), 

G2o = XG~o 
~-~(1 -- ~-)(1 - x), 

for a slab, 

for a sphere. 
(6.32) 

Here G~o and G~o are the equilibrium concentrations of Glo and G2o respectively. For the 
case of nl = n2 = n, say, we have 

and 

C 

a~° -- c + K¼(f (6.33) 

, c K ¼  1 , 
G2o -- = K~GlO. (6.34) 

c + K¼~5 

For the case of nl # n2, numerical techniques have to be used to determine G~o, where 

1 ( ~ )  TM 
(aT0) n' -- ~ [1 - G;o] n2 (6.35) 

and G~0 is obtained from the conservation of gases condition. From equation (6.35), we see 
that when the back reaction is not neglected, we find that G~0 cannot vanish. This confirms 
the statement by Szekely et al [4] that when back reactions are included, the equilibrium value 
of the reactant gas is non-zero. 

The rate of movement of the position of the interface X is found to be balanced by the 
influx of the reactant gas, as discussed in Ishida and Wen [6] and Murray and Carey [17]. 
From equation (6.34), we have 

X 1 (2(1 , - ! = _ _ Glo)t)2 

(1 - X 2) (1 - X 3) 

2 3 
- ( 1  - 

for a slab (6.36) 

for a sphere (6.37) 

6. C o n c l u s i o n s  

The study of gas-solid reactions is driven primarily by the fact the they form the basis 
of many metallurgical processes such as ironmaking in blast furnaces or copper or nickel 
production in flash smelters. Approximate solutions to the reaction-diffusion equations which 
describe gas-solid reactions provide a deeper understanding of the rate-limiting processes. In 
addition, in large scale models of metallurgical processes it is often the case that tracing the 
degree of conversion of the reactants is the slowest step in the overall computational scheme. 
Accurate approximate solutions can reduce the computation time considerably by providing 
an alternative to the numerical solution of the full reaction-diffusion equations. 

In Sections 3 and 4 of this paper we have analyzed the equations describing a gas-solid 
reaction using perturbation and series solution methods when the reaction is fast in comparison 
with the time for the reactant gas to diffuse. We show that at early times in the conversion 
process these provide excellent approximations. 
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One of the main simplifications made by researchers when examining gas-solid reactions 
is to assume the existence of a narrow reaction zone. In Section 5 we analyze this assumption 
under conditions where the reverse reaction is important. We show that, when power-law 
kinetics are applicable, this assumption holds only when the reaction rate is independent of 
the reactant solid concentration. 

Obviously, the time for complete conversion of the reactant solid is of interest. In general, 
this cannot be estimated and a researcher must rely on the numerical solution of the full 
reacfion-diff sion equations. However, under certain conditions, estimates of the conversion 
time can be found and Section 6 outlines several of these. They are extremely accurate and easy 
to compute and are based on the observation that, after a certain transient period, the behaviour 
of the system is governed by the form of the kinetic terms in the governing equations. 

In summary, our results demonstrate that, within the framework of the gas-solid systems 
covered in this work, approximate methods provide a powerful investigative tool. 

Notation 

DIMENSIONAL QUANTITIES 

DI ,D2 Diffusion coefficients of reactant and prod- So 
uct gas S' 1 ,St2 

f '  Total reaction rate 
Go Reactant bulk gas concentration t' 
G'I,G'2 Reactant and product gas concentrations x' 

Reactant initial solid concentration 
Reactant and product solid concentrations 
Porosity 
Time variable 
Spatial variable 

NONDIMENSIONAL QUANTITIES 

b, c, d Stoichiometric coefficients SI,S2 

f Total reaction rate So 
GI ,G2 Reactant and product gas concentrations t 
Go Reactant bulk gas concentration t + 
K Equilibrium constant 

ml,m2 Reaction orders of reactant and product tc 
solids x 

nl,n2 Reaction orders of reactant and product X 
gases 

Greek symbols 

6 Ratio of diffusion coefficients of reactant ¢ 
and product gases /., 

¢ Thiele modulus 

Reactant and product solid concentrations 
Reactant initial solid concentration 
Time variable 
Fast time variable 
Slow time variable 
Total conversion time 
Spatial variable 
Position of interface 

Ratio of initial reactant gas to solid 
Inverse Thiele modulus 
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